5.1. Pipeline(管道)和 FeatureUnion(特征联合): 合并的评估器
变换器(Transformers)通常与分类器,回归器或其他的学习器组合在一起以构建复合估计器。 完成这件事的最常用工具是 Pipeline。 Pipeline 经常与 FeatureUnion 结合起来使用。 FeatureUnion 用于将变换器(transformers)的输出串联到复合特征空间(composite feature space)中。 TransformedTargetRegressor 用来处理变换 target (即对数变化 y)。 作为对比,Pipelines类只用来变换(transform)观测数据(X)。
5.1.1. Pipeline: 链式评估器
Pipeline
可以把多个评估器链接成一个。这个是很有用的,因为处理数据的步骤一般都是固定的,例如特征选择、标准化和分类。Pipeline
在这里有多种用途:
- 便捷性和封装性 你只要对数据调用
fit
和predict
一次来适配所有的一系列评估器。 - 联合的参数选择 你可以一次
grid search
管道中所有评估器的参数。 - 安全性 训练转换器和预测器使用的是相同样本,管道有助于防止来自测试数据的统计数据泄露到交叉验证的训练模型中。
管道中的所有评估器,除了最后一个评估器,管道的所有评估器必须是转换器。 (例如,必须有 transform
方法). 最后一个评估器的类型不限(转换器、分类器等等)
5.1.1.1. 用法
5.1.1.1.1. 构造
Pipeline
使用一系列 (key, value)
键值对来构建,其中 key
是你给这个步骤起的名字, value
是一个评估器对象:
>>> from sklearn.pipeline import Pipeline
>>> from sklearn.svm import SVC
>>> from sklearn.decomposition import PCA
>>> estimators = [('reduce_dim', PCA()), ('clf', SVC())]
>>> pipe = Pipeline(estimators)
>>> pipe
Pipeline(memory=None,
steps=[('reduce_dim', PCA(copy=True,...)),
('clf', SVC(C=1.0,...))], verbose=False)
功能函数 make_pipeline
是构建管道的缩写; 它接收多个评估器并返回一个管道,自动填充评估器名:
>>> from sklearn.pipeline import make_pipeline
>>> from sklearn.naive_bayes import MultinomialNB
>>> from sklearn.preprocessing import Binarizer
>>> make_pipeline(Binarizer(), MultinomialNB())
Pipeline(memory=None,
steps=[('binarizer', Binarizer(copy=True, threshold=0.0)),
('multinomialnb', MultinomialNB(alpha=1.0,
class_prior=None,
fit_prior=True))],
verbose=False)
5.1.1.1.2. 访问步骤
管道中的评估器作为一个列表保存在 steps
属性内,但可以通过索引或名称([idx])访问管道:
>>> pipe.steps[0]
('reduce_dim', PCA(copy=True, iterated_power='auto', n_components=None,
random_state=None, svd_solver='auto', tol=0.0,
whiten=False))
>>> pipe[0]
PCA(copy=True, iterated_power='auto', n_components=None, random_state=None,
svd_solver='auto', tol=0.0, whiten=False)
>>> pipe['reduce_dim']
PCA(copy=True, ...)
管道的named_steps
属性允许在交互式环境中使用tab补全,以按名称访问步骤:
>> pipe.named_steps.reduce_dim is pipe['reduce_dim']
True
还可以使用通常用于Python序列(如列表或字符串)的切片表示法提取子管道(尽管只允许步骤1)。这对于只执行一些转换(或它们的逆)是很方便的:
>>> pipe[:1]
Pipeline(memory=None, steps=[('reduce_dim', PCA(copy=True, ...))],...)
>>> pipe[-1:]
Pipeline(memory=None, steps=[('clf', SVC(C=1.0, ...))],...)
5.1.1.1.3. 嵌套参数
管道中的评估器参数可以通过 <estimator>__<parameter>
语义来访问:
>>> pipe.set_params(clf__C=10)
Pipeline(memory=None,
steps=[('reduce_dim', PCA(copy=True, iterated_power='auto',...)),
('clf', SVC(C=10, cache_size=200, class_weight=None,...))],
verbose=False)
这对网格搜索尤其重要:
>>> from sklearn.model_selection import GridSearchCV
>>> param_grid = dict(reduce_dim__n_components=[2, 5, 10],
... clf__C=[0.1, 10, 100])
>>> grid_search = GridSearchCV(pipe, param_grid=param_grid)
单独的步骤可以用多个参数替换,除了最后步骤,其他步骤都可以设置为 passthrough
来跳过
>>> from sklearn.linear_model import LogisticRegression
>>> param_grid = dict(reduce_dim=['passthrough', PCA(5), PCA(10)],
... clf=[SVC(), LogisticRegression()],
... clf__C=[0.1, 10, 100])
>>> grid_search = GridSearchCV(pipe, param_grid=param_grid)
管道的估计量可以通过索引检索:
>>> pipe[0]
PCA(copy=True, ...)
示例 :
- Pipeline Anova SVM
- Sample pipeline for text feature extraction and evaluation
- Pipelining: chaining a PCA and a logistic regression
- Explicit feature map approximation for RBF kernels
- SVM-Anova: SVM with univariate feature selection
- Selecting dimensionality reduction with Pipeline and GridSearchCV
也可以参阅:
5.1.1.2. 注意
对管道调用 fit
方法的效果跟依次对每个评估器调用 fit
方法一样, 都是transform
输入并传递给下个步骤。 管道中最后一个评估器的所有方法,管道都有。例如,如果最后的评估器是一个分类器, Pipeline
可以当做分类器来用。如果最后一个评估器是转换器,管道也一样可以。
5.1.1.3. 缓存转换器:避免重复计算
适配转换器是很耗费计算资源的。设置了memory
参数, Pipeline
将会在调用fit
方法后缓存每个转换器。 如果参数和输入数据相同,这个特征用于避免重复计算适配的转换器。典型的示例是网格搜索转换器,该转化器只要适配一次就可以多次使用。
memory
参数用于缓存转换器。memory
可以是包含要缓存的转换器的目录的字符串或一个 joblib.Memory 对象:
>>> from tempfile import mkdtemp
>>> from shutil import rmtree
>>> from sklearn.decomposition import PCA
>>> from sklearn.svm import SVC
>>> from sklearn.pipeline import Pipeline
>>> estimators = [('reduce_dim', PCA()), ('clf', SVC())]
>>> cachedir = mkdtemp()
>>> pipe = Pipeline(estimators, memory=cachedir)
>>> pipe
Pipeline(...,
steps=[('reduce_dim', PCA(copy=True,...)),
('clf', SVC(C=1.0,...))], verbose=False)
>>> # Clear the cache directory when you don't need it anymore
>>> rmtree(cachedir)
警告:缓存转换器的副作用
- 使用
Pipeline
而不开启缓存功能,还是可以通过查看原始实例的,例如:
>>> from sklearn.datasets import load_digits
>>> digits = load_digits()
>>> pca1 = PCA()
>>> svm1 = SVC(gamma='scale')
>>> pipe = Pipeline([('reduce_dim', pca1), ('clf', svm1)])
>>> pipe.fit(digits.data, digits.target)
Pipeline(memory=None,
steps=[('reduce_dim', PCA(...)), ('clf', SVC(...))],
verbose=False)
>>> # The pca instance can be inspected directly
>>> print(pca1.components_)
[[-1.77484909e-19 ... 4.07058917e-18]]
开启缓存会在适配前触发转换器的克隆。因此,管道的转换器实例不能被直接查看。 在下面示例中, 访问
PCA
实例pca2
将会引发AttributeError
因为pca2
是一个未适配的转换器。 这时应该使用属性named_steps
来检查管道的评估器:
>>> cachedir = mkdtemp()
>>> pca2 = PCA()
>>> svm2 = SVC(gamma='scale')
>>> cached_pipe = Pipeline([('reduce_dim', pca2), ('clf', svm2)],memory=cachedir)
>>> cached_pipe.fit(digits.data, digits.target)
...
Pipeline(memory=...,
steps=[('reduce_dim', PCA(...)), ('clf', SVC(...))],
verbose=False)
>>> print(cached_pipe.named_steps['reduce_dim'].components_)
...
[[-1.77484909e-19 ... 4.07058917e-18]]
>>> # Remove the cache directory
>>> rmtree(cachedir)
示例 :
5.1.2. 回归中的目标转换
TransformedTargetRegressor
在拟合回归模型之前对目标y
进行转换。这些预测通过一个逆变换被映射回原始空间。它以预测所用的回归器为参数,将应用于目标变量的变压器为参数:
>>> import numpy as np
>>> from sklearn.datasets import load_boston
>>> from sklearn.compose import TransformedTargetRegressor
>>> from sklearn.preprocessing import QuantileTransformer
>>> from sklearn.linear_model import LinearRegression
>>> from sklearn.model_selection import train_test_split
>>> boston = load_boston()
>>> X = boston.data
>>> y = boston.target
>>> transformer = QuantileTransformer(output_distribution='normal')
>>> regressor = LinearRegression()
>>> regr = TransformedTargetRegressor(regressor=regressor,
... transformer=transformer)
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
>>> regr.fit(X_train, y_train)
TransformedTargetRegressor(...)
>>> print('R2 score: {0:.2f}'.format(regr.score(X_test, y_test)))
R2 score: 0.67
>>> raw_target_regr = LinearRegression().fit(X_train, y_train)
>>> print('R2 score: {0:.2f}'.format(raw_target_regr.score(X_test, y_test)))
R2 score: 0.64
对于简单的变换,可以传递一对函数,而不是一个Transformer对象,定义变换及其逆映射:
>>> def func(x):
... return np.log(x)
>>> def inverse_func(x):
... return np.exp(x)
随后,对象被创建为:
>>> regr = TransformedTargetRegressor(regressor=regressor,
... func=func,
... inverse_func=inverse_func)
>>> regr.fit(X_train, y_train)
TransformedTargetRegressor(...)
>>> print('R2 score: {0:.2f}'.format(regr.score(X_test, y_test)))
R2 score: 0.65
默认情况下,所提供的函数在每次匹配时都被检查为彼此的倒数。但是,可以通过将check_reverse
设置为False
来绕过这个检查:
>>> def inverse_func(x):
... return x
>>> regr = TransformedTargetRegressor(regressor=regressor,
... func=func,
... inverse_func=inverse_func,
... check_inverse=False)
>>> regr.fit(X_train, y_train)
TransformedTargetRegressor(...)
>>> print('R2 score: {0:.2f}'.format(regr.score(X_test, y_test)))
R2 score: -4.50
注意 可以通过设置transformer或函数对func和inverse_func来触发转换。但是,同时设置这两个选项会产生错误。
5.1.3. FeatureUnion(特征联合): 复合特征空间
FeatureUnion
合并了多个转换器对象形成一个新的转换器,该转换器合并了他们的输出。一个 FeatureUnion
可以接收多个转换器对象。在适配期间,每个转换器都单独的和数据适配。 对于转换数据,转换器可以并发使用,且输出的样本向量被连接成更大的向量。
FeatureUnion
功能与 Pipeline
一样- 便捷性和联合参数的估计和验证。
可以结合:FeatureUnion
和 Pipeline
来创造出复杂模型。
(一个 FeatureUnion
没办法检查两个转换器是否会产出相同的特征。它仅仅在特征集合不相关时产生联合并确认是调用者的职责。)
5.1.3.1. 用法
一个 FeatureUnion
是通过一系列 (key, value)
键值对来构建的,其中的 key
给转换器指定的名字 (一个绝对的字符串; 他只是一个代号), value
是一个评估器对象:
>>> from sklearn.pipeline import FeatureUnion
>>> from sklearn.decomposition import PCA
>>> from sklearn.decomposition import KernelPCA
>>> estimators = [('linear_pca', PCA()), ('kernel_pca', KernelPCA())]
>>> combined = FeatureUnion(estimators)
>>> combined
FeatureUnion(n_jobs=None,
transformer_list=[('linear_pca', PCA(copy=True,...)),
('kernel_pca', KernelPCA(alpha=1.0,...))],
transformer_weights=None, verbose=False)
跟管道一样,特征联合有一个精简版的构造器叫做:func:make_union ,该构造器不需要显式给每个组价起名字。
正如 Pipeline
, 单独的步骤可能用set_params
替换 ,并设置为drop
来跳过:
>>> combined.set_params(kernel_pca='drop')
...
FeatureUnion(n_jobs=None,
transformer_list=[('linear_pca', PCA(copy=True,...)),
('kernel_pca', 'drop')],
transformer_weights=None, verbose=False)
示例 :
5.1.4. 用于异构数据的列转换器
警告:compose.ColumnTransformer 还在实验中,它的 API可能会变动的。
许多数据集包含不同类型的特性,比如文本、浮点数和日期,每种类型的特征都需要单独的预处理或特征提取步骤。 通常,在应用scikit-learn方法之前,最容易的是对数据进行预处理,例如 pandas。 在将数据传递给scikit-learn之前处理数据可能会出现问题,原因如下:
- 将来自测试数据的统计信息集成到预处理程序中,使得交叉验证分数不可靠(被称为数据泄露)。 例如,在尺度变换或计算缺失值的情况下。
- 你可能想要在
parameter search
中包含预处理器参数。
compose.ColumnTransformer对数据的不同列执行不同的变换,该管道不存在数据泄漏,并且可以参数化。ColumnTransformer可以处理数组、稀疏矩阵和pandas DataFrames。
对每一列,都会应用一个不同的变换, 比如preprocessing或某个特定的特征抽取方法:
>>> import pandas as pd
>>> X = pd.DataFrame(
... {'city': ['London', 'London', 'Paris', 'Sallisaw'],
... 'title': ["His Last Bow", "How Watson Learned the Trick",
... "A Moveable Feast", "The Grapes of Wrath"],
... 'expert_rating': [5, 3, 4, 5],
... 'user_rating': [4, 5, 4, 3]})
对于这些数据,我们可能希望使用preprocessing.OneHotEncoder
将city
列编码为一个分类变量,同时使用feature_extraction.text.CountVectorizer
来处理title
列。由于我们可能会把多个特征抽取器用在同一列上, 我们给每一个变换器取一个唯一的名字,比如“city_category”和“title_bow”。默认情况下,忽略其余的ranking列(remainder='drop'
):
>>> from sklearn.compose import ColumnTransformer
>>> from sklearn.feature_extraction.text import CountVectorizer
>>> column_trans = ColumnTransformer(
... [('city_category', CountVectorizer(analyzer=lambda x: [x]), 'city'),
... ('title_bow', CountVectorizer(), 'title')],
... remainder='drop')
>>> column_trans.fit(X)
ColumnTransformer(n_jobs=None, remainder='drop', sparse_threshold=0.3,
transformer_weights=None,
transformers=...)
>>> column_trans.get_feature_names()
...
['city_category__London', 'city_category__Paris', 'city_category__Sallisaw',
'title_bow__bow', 'title_bow__feast', 'title_bow__grapes', 'title_bow__his',
'title_bow__how', 'title_bow__last', 'title_bow__learned', 'title_bow__moveable',
'title_bow__of', 'title_bow__the', 'title_bow__trick', 'title_bow__watson',
'title_bow__wrath']
>>> column_trans.transform(X).toarray()
...
array([[1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0],
[0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1]]...)
在上面的示例中,CountVectorizer
希望接受一维数组作为输入,因此列被指定为字符串('title'
)。然而,preprocessing.OneHotEncoder
就像大多数其他转换器一样,期望2D数据,因此在这种情况下,您需要将列指定为字符串列表(['city']
)。
除了标量或单个项列表外,列选择可以指定为多个项、整数数组、片或布尔掩码的列表。如果输入是DataFrame,则字符串可以引用列,整数总是解释为位置列。
我们可以通过设置remainder='passthrough'
来保留其余的ranking列。这些值被附加到转换的末尾:
>>> column_trans = ColumnTransformer(
... [('city_category', OneHotEncoder(dtype='int'),['city']),
... ('title_bow', CountVectorizer(), 'title')],
... remainder='passthrough')
>>> column_trans.fit_transform(X)
...
array([[1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 5, 4],
[1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 3, 5],
[0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 4, 4],
[0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 5, 3]]...)
可以将remainder
设置为estimator来转换剩余的ranking列。转换后的值被附加到转换的末尾:
>>> from sklearn.preprocessing import MinMaxScaler
>>> column_trans = ColumnTransformer(
... [('city_category', OneHotEncoder(), ['city']),
... ('title_bow', CountVectorizer(), 'title')],
... remainder=MinMaxScaler())
>>> column_trans.fit_transform(X)[:, -2:]
...
array([[1. , 0.5],
[0. , 1. ],
[0.5, 0.5],
[1. , 0. ]])
函数 make_column_transformer
可用来更简单的创建类对象 ColumnTransformer
。 特别的,名字将会被自动给出。上面的示例等价于
>>> from sklearn.compose import make_column_transformer
>>> column_trans = make_column_transformer(
... (OneHotEncoder(), ['city']),
... (CountVectorizer(), 'title'),
... remainder=MinMaxScaler())
>>> column_trans
ColumnTransformer(n_jobs=None, remainder=MinMaxScaler(copy=True, ...),
sparse_threshold=0.3,
transformer_weights=None,
transformers=[('onehotencoder', ...)
示例 * Column Transformer with Heterogeneous Data Sources * Column Transformer with Mixed Types