Skip to content

5. 数据集转换

scikit-learn 提供了一个用于转换数据集的库, 它也许会 clean(清理)(请参阅 预处理数据), reduce(减少)(请参阅 无监督降维), expand(扩展)(请参阅 内核近似)或 generate(生成)(请参阅 特征提取) feature representations(特征表示).

像其它预估计一样, 它们由具有 fit 方法的类来表示, 该方法从训练集学习模型参数(例如, 归一化的平均值和标准偏差)以及transform 方法将该转换模型应用于不可见数据. 同时 fit_transform 可以更方便和有效地建模与转换训练数据.

Pipeline(管道)和 FeatureUnion(特征联合): 合并的评估器 中 transformers(转换)使用并行的或者串联的方式合并到一起. 成对的矩阵, 类别和核函数 涵盖将特征空间转换为 affinity matrices(亲和矩阵), 而 预测目标 (y) 的转换 考虑在 scikit-learn 中使用目标空间的转换(例如. 标签分类).



回到顶部